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Supplemental Materials

0.1 Kernel Sparsity (sc)

During the ConvNet backpropagation, the update of the 2D kernels, Wn,c (where n and
c are, respectively, the indices of the output and input feature maps), is given by:
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where Xc and Yn represent, respectively, the input and output feature maps of the con-
volutional layer, η denotes the learning rate, and L and R denote the loss function and
weight regularization, respectively. A sparse input feature map, Xt

c, may result in a
sparse weight, W (t+1)

n,c , during training. This is because the sparse feature map yields a
small weight update The kernel sparsity for the cth input feature map is defined as:

sc =

N∑
n=1

|Wn,c|, (2)

where N denotes the total number output feature maps.

0.2 Kernel Entropy (ec)

Kernel entropy is built on the fact that the diversity of the input feature maps is directly
related to that of the corresponding convolution kernels. To determine the diversity
of the kernels, a nearest neighbor distance matrix, Ac, is first computed for the cth

convolution kernel. The value in the ith row and jth column of Ac is assigned to be:

Aci,j =

{
‖Wi,c −Wj,c‖, if Wj,c ∈ {Wi,c}k
0, otherwise

where {Wi,c}k represents the k-nearest-neighbor of Wi,c. Then, a density metric is
calculated for Wi,c, which is defined as:

dm(Wi,c) =

N∑
j=1

Aci,j . (3)

If dm(Wi,c) is large, then the convolution kernel is more different from the its neigh-
bors, and vice versa. The kernel entropy is calculated as the entropy of the density
metrics:

ec = −
N∑
i=1

dm(Wi,c)∑N
i=1 dm(Wi,c)

log2

dm(Wi,c)∑N
i=1 dm(Wi,c)

. (4)

A small ec indicates diverse convolution kernels. Thus, the corresponding input feature
map provides more information to the ConvNet.
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0.3 Kernel Sparsity & Entropy (KSE)

KSE is then defined as:

KSE =

√
sc

1 + αec
, (5)

where KSE, sc, and ec are normalized into [0, 1], and α is a parameter for controlling
weight between sc and ec, which is set to 1.

0.4 Evaluation Metrics

For quantitative evaluation of the denoised v2 whole-body scans, the ensemble bias in
the mean standard uptake value (SUV) of the simulated tumor that was inserted in a real
patient background, and the liver coefficient of variation (CoV) were calculated from
10 noise realizations. The ensemble bias is formulated as:

BIAS(%) =
1
R

∑R
r µ

L
r − TL

TL
× 100, (6)

where µRr denotes the average counts within the lesion L of the rth noise realization,
and TL represents the ”true” (from high quality PET scan) intensity value within the
lesion.

The liver CoV was computed as:

CoV(%) =
1
N

∑
i∈B σ

R
j

µ̄B
× 100, (7)

where σRj denotes the ensemble standard deviation of jth voxel across R (R = 10) re-
alizations, N is the total number of voxels in the background volume-of-interest (VOI)
B. The liver CoV is computed within a hand-drawn 3D VOI within the liver.

0.5 Comparisons of The Training Time

Method Img. Recon. Network Training Total Time Percent Time Saved

v1/v2-net 1 wk.
Pt. × 20 Pts. 5.5 days 20.8 wks. -

FT/TGD-net 1 wk.
Pt. × 7 Pts. 2.5 days 7.4 wks. 64%

Table 1: Comparisons of data preparation and network training time used between the
proposed method and training-from-scratch. ”FT” denotes ”fine-tuning”, and ”Wk.” and
”Pt.” stand for, respectively, ”week” and ”patient”. To form a complete dataset, it re-
quired approximately a week to reconstruct training pairs of noisy inputs and target for
each patient (1 target + 6 different count levels), and a total of 20 patients were used for
training v1-net and v2-net.
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0.6 Additional Results

Fig. 1: Comparisons of proposed TGD-N2N and other methods on a FDG-PET patient
study which had urinary catheters attached during the scan (denoted by the arrows). The
first and second rows show the trans-axial slices of the urinary catheters and liver of the
same study, respectively. All the images are displayed in the same inverted grey scale.
This study was acquired for 120-sec, which was rebinned into 2 noise samples with
equal count levels (60-sec) for the TGD-N2N training. Both TGD-N2N networks were
retrained for 150 epoch. All the networks were then applied to the 120-sec scan (in-
put image) to generate the denoised results. The out-of-distribution objects (catheters)
led to artifacts in both v2-net and TGD-net results. The online learning approaches us-
ing TGDN2N-netφ=0.36 and TGD2

N2N-netφ=0.3,0.4 alleviated the artifacts while retaining
similar denoising performance in terms of liver Coefficient-of-Variations (CoV) in the
ROI denoted by the red circle. The KSE threshold for both TGD-N2N results were
adjusted to achieve similar liver CoV for a fair comparison.


