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When deploying a pretrained ConvNet for clinical 
applications, we often face two challenges:
• When new imaging systems and or updated 

reconstruction algorithms are employed:
• Image quality and appearance will change.
• Neural networks need to be retrained to adapt the 

changes.

Fig: Change in image quality and appearance due to a change in 
reconstruction algorithm.

• A trained DNN often produces suboptimal 
predictions on unseen features.

Fig: A denoising network produced artifacts on features that were 
not included in the training dataset.

In this study, we present Targeted Gradient Descent 
(TGD), a novel fine-tuning method that can extend a 
pre-trained network to a new task without revisiting 
data from the previous task while preserving the 
knowledge acquired from previous training. To a further 
extent, the proposed method also enables online 
learning of patient specific data. We demonstrate the 
proposed method’s effectiveness in denoising tasks for 
PET images.

Rationale

Method

• There are “Useless/redundant” feature maps exists 
in a pretrained ConvNet, because ConvNet did not 
efficiently use all of its kernels, and some of kernels 
contribute less.

• Can we specifically retrain these “useless” kernels 
that generates “useless/redundant” feature maps?

• Pretrained PET denoising ConvNet:
A 2.5D DnCNN [1] that takes three consecutive 2D 
image slices as its input.

• Identifying which feature maps are “meaningful”.
To update the specific kernels in the fine-tuning 
training, the information richness in the feature maps 
needs to be determined. The corresponding network 
kernels can then be identified and updated in the 
retraining stage to generate new feature maps. Here we 
used Kernel Sparsity and Entropy (KSE) metric 
proposed by Li et al. [2].

• Kernel Sparsity and Entropy (KSE)
KSE [] quantifies the sparsity and information richness 
in a kernel to evaluate a feature map’s importance to the 
network. KSE contains two parts: the kernel sparsity, 𝑠𝑐 , 
and the kernel entropy, 𝑒𝑐 .
1. Kernel sparsity 𝑠𝑐: l1-norm of the kernels.
• 𝑠𝑐 = σ𝑛=1
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2. Kernel entropy 𝑒𝑐: a measure of the diversity among
the kernels.
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3. KSE score:

• 𝐾𝑆𝐸 =
𝑠𝑐

1+𝛼∙𝑒𝑐

KSE is normalized to [0, 1] in each layer.

• Targeted Gradient Descent (TGD)
Identify the indices of the convolution kernels that 
generate the “useless” feature maps by setting a KSE 
threshold 𝜙. The indices were used for generating a 
binary mask 𝑀𝑛 in the gradient space:

• 𝑀𝑛 = ቊ
𝟏, 𝑖𝑓 𝐾𝑆𝐸 𝑌𝑛 < 𝜙

𝟎, 𝑖𝑓 𝐾𝑆𝐸 𝑌𝑛 ≥ 𝜙

𝑀𝑛 zeros out the gradients for the “useful” kernels (i.e., 
ones with 𝐾𝑆𝐸 𝑌𝑛 ≥ 𝜙) during retraining (or fine-
tuning). Mathematically, the back-propagation formula 
with TGD is defined as:
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This masking process is packaged into a novel TGD layer 
that only activates during backpropagation and not 
forward pass. 

Fig: TGD layers are inserted after each convolution layer and batch 
normalization layer.

Method (cont.)

Fig: The framework of TGD training. The kernel weights in layer 𝑖

(i.e.,𝑊𝑛𝑖,𝑐𝑖

𝑙𝑎𝑦𝑒𝑟𝑖) were used to calculate KSE scores for the input feature 

maps in layer 𝑖 (i.e., 𝑋𝑐𝑖
𝑙𝑎𝑦𝑒𝑟𝑖), then the kernels in layer 𝑖 − 1 (e.g., the 

green box: 𝑊1,𝑐𝑖

𝑙𝑎𝑦𝑒𝑟𝑖) that generated the input feature maps in layer 𝑖

(i.e., 𝑋𝑐𝑖
𝑙𝑎𝑦𝑒𝑟𝑖) were identified and would be retrained in the proposed 

TGD method.

• TGD noise-2-noise online learning
Neural networks tend to produce suboptimal 
predictions on images that contain out-of-distribution 
features (features that are never seen in the training 
dataset). We then proposed to use TGD-network for 
N2N [9] online learning training, which alleviated 
hallucination artifacts from the images.

Fig: The proposed TGD noise-2-noise online learning method.

Experiment
We demonstrate the proposed TGD method on the task 
of PET image denoising. 
• A DnCNN was trained using FDG PET images 

reconstructed from a prior version of the OSEM 
algorithm. We denote these images as v1 images and 
the pretrained DnCNN as the v1 network.

• The v1 network produces oversmoothed results 
when it is applied on the PET images reconstructed 
by an updated OSEM algorithm (we denote these 
images as v2 images).

The main goal is to use TGD fine-tuning to adapt the v1 
network to v2 images, and then apply TGD N2N online 
learning to eliminate hallucination artifacts produced 
by out-of-distribution features.

Noisy Image v1 network v2 network

Fig: ConvNet denoised 
results of a v2 image 
generated by the v1 
network and v2 
network

Results

• Compared methods
o Baseline networks:
o v1-net: DnCNN trained with v1 images
o v2-net: DnCNN trained with v2 images

o Fine-tuning task:
o FT-net: Fine-tuning the last three convolutional blocks.
o TGD-net: v1-net fine-tuned using the TGD layers

o Online-learning task:
o TGD_N2N-net: TGD N2N applied on the v2-net
o TGD_N2N^2 -net : TGD N2N applied on the TGD-net

• Determine KSE threshold 𝜙

Fig: KSE threshold values of 0.3 and 0.4 resembles the original 
denoising performance the best.

• TGD fine-tuning

Fig: Qualitative comparisons between the proposed TGD method 
and other methods on denoising two FDG patient studies. The red 
numbers indicate the ensemble bias (%) comparing to the ground 
truth; the yellow numbers denote the liver CoV (%).

• TGD N2N online-learning

Fig: The red arrows indicate the unseen features, which was not 
included in any training datasets. The online learning approaches 
alleviated the artifacts while retaining similar denoising 
performance.
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