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• Training a CNN typically requires a large amount of data.
• Acquiring training data is time consuming and expensive.
• Challenge 1:

• When new imaging systems and or updated reconstruction algorithms are employed:
• Image quality and appearance will change.
• Neural networks need to be retrained to adapt the changes.

• Challenge 2:
• A trained DNN often produces suboptimal predictions on unseen features.

Background

Challenge 1: 
“v1” 

reconstruction 
Improved “v2” 
reconstruction 

Noisy Input Conventional DnCNN

F-18 FDG PET images of the right lung of a human subject

F-18 FDG PET images of the pelvis region of a human subject

Challenge 2: 
ArtifactsUnseen features (urinary catheters)
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• Existing methods that can be used to avoid retraining a pretrained DNN from scratch:
• Fine-tuning [1, 2]: Suffer from catastrophic forgetting.
• Joint training [3, 4]: Require revisiting dataset from the previous tasks.
• Continual learning [5, 6]: Require previous dataset, or hard to tune the hyper-parameters.

• In this work, we proposed a network fine-tuning and online-learning scheme that:
• Adapts a pretrained DCNN to new imaging protocols with the minimum need for additional 

training data.
• Adapts a pretrained DCNN to individual testing image to avoid producing artifacts on unseen 

features.

• We applied the proposed method on the task of F-18 FDG PET image denoising.

Significance & Novelty

[1]: Amiri et al. 2019
[2]: Gong et al. 2018
[3]: Caruana 1997

[4]: Wu et al. 2018
[5]: Baweja et al. 2018
[6]: Kirkpatrick et al. 2017
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• “Useless/redundant” feature maps exists in a pretrained ConvNet:
• ConvNet did not effectively use all of its kernels
• Some of the kernels generate useless/redundant feature maps

• Specifically retrain these “useless” kernels:
• Network retains the knowledge learned from the previous tasks because the kernels that

produce “meaningful” feature maps were kept.
• Network’s performance on new task is improved by updating the “useless” kernels.

Rationale: Retraining “useless” kernels
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• Kernel sparsity and entropy (KSE) [7]:
• Operates on the convolutional kernels, but it quantifies the information richness of the input

feature map.
• Kernel sparsity: l1-norm of the kernels.

• 𝑠𝑠𝑐𝑐 = ∑𝑛𝑛=1𝑁𝑁 |𝑊𝑊𝑛𝑛,𝑐𝑐|
• Kernel entropy: a measure of the diversity of the kernels.

• 𝑒𝑒𝑐𝑐 = −∑𝑖𝑖=0𝑁𝑁−1 𝑑𝑑𝑑𝑑(𝑊𝑊𝑖𝑖,𝑐𝑐)
∑𝑖𝑖=0
𝑁𝑁−1 𝑑𝑑𝑑𝑑(𝑊𝑊𝑖𝑖,𝑐𝑐)

log2
𝑑𝑑𝑑𝑑(𝑊𝑊𝑖𝑖,𝑐𝑐)

∑𝑖𝑖=0
𝑁𝑁−1 𝑑𝑑𝑑𝑑(𝑊𝑊𝑖𝑖,𝑐𝑐)

• KSE score:

• 𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑠𝑠𝑐𝑐
1+𝛼𝛼�𝑒𝑒𝑐𝑐

• 𝛼𝛼 a weighting parameter.
• KSE is normalized to [0, 1] in each layer.

• “Useless” feature maps are identified as those with KSE <𝜑𝜑.
• 𝜑𝜑 is a predefined KSE threshold.

Method: Identifying “useless” feature maps 

A convolutional operation is formulated as:

𝑌𝑌𝑛𝑛 = �
𝑐𝑐=0

𝐶𝐶−1

𝑊𝑊𝑛𝑛,𝑐𝑐 ∗ 𝑋𝑋𝑐𝑐

where Y is the output feature maps, X is the 
input feature maps, and ∗ represents 
convolution. 

[7]: Li et al. 2019
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• The goal is to specifically retrain the kernels that generates these feature maps.

Method: Targeted Gradient Descent
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• Identify the indices of the convolution kernels that generate the “useless” feature maps.
The indices were used for generating a binary mask in the gradient space:

• 𝑀𝑀𝑛𝑛 = �1, 𝑖𝑖𝑖𝑖 𝐾𝐾𝐾𝐾𝐾𝐾 𝑌𝑌𝑛𝑛 < 𝜑𝜑
0, 𝑖𝑖𝑖𝑖 𝐾𝐾𝐾𝐾𝐾𝐾 𝑌𝑌𝑛𝑛 ≥ 𝜑𝜑

• 𝑀𝑀𝑛𝑛 zeros out the gradients for the “useful” kernels (i.e., ones with 𝐾𝐾𝐾𝐾𝐾𝐾 𝑌𝑌𝑛𝑛 ≥ 𝜑𝜑).

• Mathematically, the back-propagation formula with TGD is defined as:

• 𝑊𝑊𝑛𝑛,𝑐𝑐
(𝑡𝑡+1) = 𝑊𝑊𝑛𝑛,𝑐𝑐

(𝑡𝑡) − 𝜂𝜂 𝜕𝜕𝜕

𝜕𝜕𝑌𝑌𝑛𝑛
𝑡𝑡 𝑀𝑀𝑛𝑛𝑋𝑋𝑐𝑐

(𝑡𝑡) − 𝜕𝜕𝜕(𝑊𝑊𝑛𝑛,𝑐𝑐
𝑡𝑡 )

𝜕𝜕𝑌𝑌𝑛𝑛
𝑡𝑡 𝑀𝑀𝑛𝑛𝑋𝑋𝑐𝑐

(𝑡𝑡)

• This masking process is implemented as a novel TGD layer that only activates during
backpropagation and not forward pass.

Method: Targeted Gradient Descent
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• A 2.5-dimensional DnCNN [8] that predicts noise in a given image.
• This is based on the previous architecture for PET denoising used in [9].

• TGD layer is inserted after each convolution layer and batch normalization layer.
• Convolution and batch norm layers contain trainable weights.

• Training with TGD layers fine-tunes the network for new tasks while maintaining the 
knowledge learned from prior tasks.

Method: Fine-tuning ConvNet with TGD

[8]: Zhang et al. 2017
[9]: Chan et al. IEEE MIC, 2018
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• We then proposed to use TGD-network with Noise2Noise training (N2N) [9] for online 
learning, which helps the neural network adapt to unseen features during testing without 
the need to collect new training datasets to re-train the network:

• Split the testing study into 2 i.i.d. noisy samples with nearly equivalent number of counts.

• Using noise sample 1 as the input, noise sample 2 as the label, and vice versa.

Method: Online learning using TGD with N2N 

TGD-Net

Noisy 
Sample 1

MSE

[9]: Lehtinen et al. 2018

Testing 
study

Split into 2 
samples in the 
data domain 

Noisy 
Sample 2

Noisy 
Sample 1

Noisy 
Sample 2
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• Network architecture: A 8-layer DnCNN for FDG-PET image denoising
• Baseline networks:

• Fine-tuning task:
• FT-net: Fine-tuning the last three convolutional blocks

of v1-net using 7×5 v2 images
• TGD-net: v1-net fine-tuned using the TGD layers with

7×5 (noise levels) v2 images
• Online-learning task:

• TGDN2N-net: TGD N2N applied on the v2-net
• TGDN2N

2 -net : TGD N2N applied on the TGD-net
• All methods are trained using TensorFlow on a single

NVIDIA Titan V GPU.
• Optimizer: Adam
• Learning rate = 0.001
• Number of epochs = 500 for TGD, 150 for TGD N2N

Experiment: Networks and training parameters 

Network
Models

Number of training 
datasets

Noise levels generated 
for each training dataset

Reconstruction method

v1-net 20 5 V1 (old) 

v2-net 20 5 V2 (new)

v1-net v2-netv2 image input

Synthetic lesion

Over-smoothing

Artifacts

v1-netv2 image input
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Experiment: Quantitative analysis

• Fine-tuning task:
• We rebinned a 600-sec/bed F-18 FDG PET study into 10 × 60-sec/bed image i.i.d noise 

realizations to assess the ensemble bias on the tumor, and liver coefficient of variation (CoV) by 
using the 600-sec/bed image as the ground truth.

• Ensemble bias (quantifies activity recovery in a lesion):

• 𝐵𝐵𝐵𝐵𝐵𝐵𝐾𝐾 % =
1
𝑅𝑅 ∑𝑟𝑟 𝜇𝜇𝑟𝑟−𝑇𝑇

𝑇𝑇
• Ensemble CoV (quantifies noise in a background VOI (e.g., liver)):

• 𝐶𝐶𝐶𝐶𝐶𝐶 % =
1
𝑁𝑁 ∑𝑖𝑖∈𝐵𝐵 𝜎𝜎𝑖𝑖

𝑅𝑅

�𝜇𝜇𝐵𝐵
• Online-learning:

• Reduction of hallucination by visual assessment
• Liver CoV (%) of the same patient
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• During the prediction, kernels in the pretrained v1 network that are recognized as 
"meaningless" by the KSE threshold are discarded (i.e., the weights are set to 0).

• KSE threshold values of 0.3 and 0.4 resembles the original denoising performance the 
best.

Experiment: Determine KSE threshold 𝜑𝜑



13

Results: TGD fine tuning results & quantifications

• Qualitative comparisons between the proposed TGD method and other methods on
denoising two FDG patient studies

• The red numbers indicate the ensemble bias (%) comparing to the ground truth
• The yellow numbers denote the liver CoV (%)

-6.3% -4.7% -3.8%-4.1%

6.0% 7.9% 6.5%8.6%

Synthetic 
lesion

Speckle 
noise
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Results: TGD N2N online learning - case 1

The red arrows indicate the artifactual feature generated by the v2-net and TGD-net around the
bladder, which was not included in any training datasets. Both TGDN2N and TGDN2N

2 yielded images
which are in high fidelity to the input image on the bladder, while retaining similar denoising
performance as v2-net and TGD-net.



15

Results: TGD N2N online learning - case 2

The red arrows indicate the urinary catheters, which was not included in any training datasets.
The online learning approaches using TGDN2N and TGDN2N

2 alleviated the artifacts while retaining
similar denoising performance in terms of liver CoV in the ROI denoted by the red circle.



Conclusion:

• This work introduces Target Gradient Descent, a novel fine-tuning scheme that can 
effectively retrain the redundant kernels in a pre-trained network 

• The proposed TGD framework can be easily incorporated into an existing network and
does not require revisiting the data from previous task

• We demonstrated the effectiveness of TGD for PET image denoising

• The preliminary results show:
• TGD enables adapting a pre-trained network to new tasks
• TGD may allow online learning on the testing study in order to improve the network's

generalization capacity in real-world applications
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