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Figure 1: Left: One hidden layer MLP (image was obtained from [1]). Middle: Effects of bias on a linear regression
model (image was obtained from [2]). Right: Effects of bias on the Sigmoid activation (image was obtained from [3]).

1 Multilayer perceptron network

Multilayer perceptron network (MLP) models the human brain, whereby the neurons in MLP are stimulated by
connected nodes and are only activated when a certain threshold value is reached. The output of a neuron can be written
as:

ai = act(
∑
j

wijxj + bi), (1)

where wij represents the weight at index i and j, xj is the jth input neuron (neuron in the previous layer), bi is the ith
bias, and act denotes the activation function.

1.1 Bias

Bias is an additional parameter in the network which is used to adjust the activation function by adding a constant
(i.e. the given bias) to the input. It is a constant that helps the model to fit better for the given data. As shown in the
middle and the right panels of Fig. 1, adding a bias shifts the linear regression model and the activation function to
provide better model fitting to the data.

1.2 Activation function

Without activation function (i.e., act in Eqn. 1), the output ai can take values from −∞ to∞, which does not
precisely model how brain neurons work. An activation function is used to decide whether the neuron should fire or not.
As we shall see in section 1.3, without activation function, every neuron will only be performing a linear transformation
on the inputs using the weights and biases, which will not be useful to learn complex patterns from real world data.
Therefore, nonlinearities introduced by activation functions are essential in a neural network. Different choices of
activation functions are shown in Fig. 2.

1.3 Backpropagation in MLP

Backpropagation is an algorithm used to train neural networks. It is used along with an optimization routine such
as gradient descent. Backpropagation updates the weights in the network to provide a better fitting to given data. Let us
consider a single layer MLP model:

p = act(
∑
j

wjxj + b). (2)
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Figure 2: Different activation functions (image was obtained from [4]).

Let p (i.e., f(x) in the left panel of Fig. 1) be the output of the network, and t be the target (or ground truth), the loss
function (mean squared error) can be defined as:

L =
1

2
‖p− t‖2. (3)

In backpropagation, a weight (i.e., wij) is updated by computing the partial derivative of the loss function L with
respect to (w.r.t) the weight using the chain rule:

∂L
∂wj

=
∂L
∂p

∂p

∂wj
· · · · · · · chain rule

=
∂[ 12‖p− t‖

2]

∂p

∂p

∂wj
= (p− t) ∂p

∂wj

= (p− t)
∂act(

∑
j wjxj + b)

∂wj

= (p− t)
∂act(

∑
j wjxj + b)

∂(
∑

j wjxj + b)

∂(
∑

j wjxj + b)

∂wj
· · · · · · · chain rule

= (p− t)
∂act(

∑
j wjxj + b)

∂(
∑

j wjxj + b)
xj ,

(4)

where
∂act(

∑
j wjxj+b)

∂(
∑

j wjxj+b) is simply the derivative of the activation function (activation functions shown in Fig. 2).
Similarly, the partial derivative of the loss function L w.r.t b can be computed as:
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Figure 3: An image and its shift version activates different neurons (image was obtained from [5]).

∂L
∂b

=
∂L
∂p

∂p

∂b
· · · · · · · chain rule

= (p− t)
∂act(

∑
j wjxj + b)

∂b

= (p− t)
∂act(

∑
j wjxj + b)

∂(
∑

j wjxj + b)

∂(
∑

j wjxj + b)

∂b
· · · · · · · chain rule

= (p− t)
∂act(

∑
j wjxj + b)

∂(
∑

j wjxj + b)
.

(5)

From Eqn. 4 and 5 we can see that without the activation function, the derivative
∂act(

∑
j wjxj+b)

∂(
∑

j wjxj+b) goes away, and the
overall partial derivative becomes a linear scaling. The derivatives of different activation functions are shown in Fig. 2.
Finally, the classical gradient descent is used to update weights:

wn+1 = wn − aw
∂L
∂wn

, (6)

where aw is the learning rate that is specified by an optimization method.

1.4 Problems with MLP on Image Tasks

MLPs are found to have limited performance on image tasks, such as image classification and segmentation. The
drawbacks are two folds:

• MLPs use one perceptron (i.e., neuron) for each input (i.e., for each pixel or voxel in an image). The amount
of weights rapidly becomes unmanageable for large network architectures and large images.

• Another drawback is that MLPs are not translation invariant. They tends to react differently to an input and its
shifted version (as illustrated in Fig. 3)

Therefore, MLPs are not optimal for image tasks. We introduce another variant of neural networks in the following
section.

2 Convolutional Neural Networks

Convolutional neural networks (ConvNets) solves the problems mentioned in section 1.4. Instead of using one
neuron for each pixel, ConvNets learns a set of small convolutional kernels (typically 3×3 or 5×5), which dramatically
decreases the number of weights. Besides, due to the nature of convolutional filters, ConvNets inherently learns the
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Figure 4: A simple two-layer ConvNet.

correlations between a pixel and its neighboring pixels. The filters (or kernels) in ConvNet could be related to anything.
For example, in an image of cat, a filter could be associated with seeing cat’s ears, and this filter will provide an
indication of how strongly the cat’s ears seem to appear in a given image, and in what locations in the image they appear.
The output from a convolutional operation is defined as:

Fn = act(
∑
c

knc ∗ Ic + bn), (7)

where Fi denotes the nth output feature map corresponds to the nth kernel of cth channel (i.e., knc), bn is the bias,
and Ic denotes the cth input feature map. Similar to MLPs, the weights in a ConvNet is updated by backpropagation
algorithm.

2.1 Backpropagation in ConvNet

Let us consider a simple ConvNet, as shown in Fig. 4, and assume the kernels k1 and k2 are 3× 3 kernels. We, again,
choose the loss function to be MSE due to its simplicity:

L =
1

N
‖p− t‖2, (8)

where p represents the output image (i.e., p = F layer 2), t denotes the ground truth, and N is the total number of
pixels. We first calculate the partial derivative of L w.r.t the kernel k2:

∂L
∂k2(u)

=
∂L
∂p

∂p

∂k2(u)
· · · · · · · chain rule

=
∑
n

2

N
(p(n)− t(n))

∂p(n)

∂k2(u)

=
∑
n

2

N
(p(n)− t(n))

∂

∂k2(u)
act

(
4∑

u=−4
F (n− u)k2(u) + b2(n)

)

=
∑
n

2

N
(p(n)− t(n))

∂act
(∑4

u=−4 F (n− u)k2(u) + b2(n)
)

∂
∑4

u=−4 F (n− u)k2(u) + b2(n)
F (n− u) ,

(9)

where, again,
∂act(

∑4
u=−4 F (n−u)k2(u)+b2(n))

∂
∑4

u=−4 F (n−u)k2(u)+b2(n)
≡ act′ is the derivative of the activation function. Next, we calculate the

partial derivative of L w.r.t the kernel k1:
∂L

∂k1(u)
=
∂L
∂F

∂F

∂k1(u)
· · · · · · · chain rule

=
∂L
∂p

∂p

∂F

∂F

∂k1(u)
· · · · · · · chain rule,

=
∑
n

∂L
∂p(n)

∂p(n)

∂F (n)

∂F (n)

∂k1(u)

(10)
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where ∂p(n)
∂F (n) can be computed as:

∂p(n)

∂F (n)
=

∂

∂F (n)
act

(
4∑

u=−4
F (n− u)k2(u) + b2(n)

)

= act′
∂

∂F (n)

(
4∑

u=−4
F (n− u)k2(u) + b2(n)

)
= act′ · k2(u).

(11)

Then, the partial derivative of L w.r.t the kernel k1 becomes:

∂L
∂k1(u)

=
∂L
∂F

∂F

∂k1(u)
· · · · · · · chain rule

=
∂L
∂p

∂p

∂F

∂F

∂k1(u)
· · · · · · · chain rule,

=
∑
n

∂L
∂p(n)

∂p(n)

∂F (n)

∂F (n)

∂k1(u)

=
∑
n

∂L
∂p(n)

act′ · k2(u)
∂

∂k1(u)
act

(
4∑

u=−4
I(n− u)k1(u) + b1(n)

)

=
∑
n

∂L
∂p(n)

act′ · k2(u)
∂act

(∑4
u=−4 I(n− u)k1(u) + b1(n)

)
∂
∑4

u=−4 I(n− u)k1(u) + b1(n)
· I(n− u) .

(12)

Similar equations can be obtained for the biases b1 and b2.

2.2 Batch Normalization

Normalization is a data pre-processing method used to bring data to a common scale. In medical imaging,
normalization is usually done by scaling the the intensity of an image into a range of [0, 1], or it is done by normalizing
the images into their z-scores. The reason of doing normalization is to ensure that the trained models can generalize
well on the testing dataset.

In batch normalization, the term "batch" refers to the amount of data used to train a network in a single iteration
(or a single forward/backward pass). Therefore, batch normalization is performed on a batch of images, instead of each
individual input. Without batch normalization, input feature maps to each layer will not be normalized (except the first
layer, assuming data normalization is performed in a pre-processing step). Batch normalization is found to speedup
training (i.e., converging faster). It is performed by first standardize the batch of data to its z-score, then scale and shift
the data by some trainable parameters:

1. Compute mean of the batch:

µ =
1

N

∑
n

Xn, (13)

where N is the total number of images (or samples), and Xn is the nth image (or feature map).
2. Compute standard deviation of the batch:

σ = [
1

N

∑
n

(Xn − µ)2]1/2. (14)

3. Normalize to z-score:
X̄n =

Xn − µ
σ + η

, (15)

where η is a small value to prevent dividing by zero.
4. Scale and shift:

X̂BN
n = γX̄n + β, (16)

where γ and β are, respectively, scaling and shifting factors.
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Figure 5: Illustration of the receptive field of convolution layers.

Figure 6: A recurrent convolution layer.

2.3 The Effective Receptive Fields of ConvNets

The receptive field (RF) can be referred to as the region in the input image that a particular CNN’s feature is
looking at (i.e. be affected by), or the region in the image that a kernel (i.e., filter) of a convolution layer can see. The
effective receptive field (ERF) of the network grows with its depth. Let us look at an example shown in Fig. 5, where the
RF of the first convolution operation is 3× 3 (this equals to its filter size). Each pixel in the second image contains the
information from a 3× 3 region in the previous image. Therefore, the effective receptive field of the second convolution
operation is:

Current ERF = Size of Current RF + Size of Previous RF− 1. (17)

We can see that the ERF increases with the number of convolution layers used.

3 Advancement in Network Design

3.1 Recurrent ConvNet

One disadvantage of a conventional ConvNet is that the ERFs are small for the first several layers, that is, the
ConvNet will not be able to "see" the whole image until the very last of layers. To overcome this problem, Liang et al.
[6] proposed a recurrent ConvNet (RCNN), where the kernel of a convolution layer can "see" a larger region without
increasing the kernel size. Therefore, RCNN can help a ConvNet to understand the context in an image better. The main
component in a RCNN is the recurrent convolution layer (RCL), and it is shown in Fig. 6. An RCL can be expanded
into t regular convolution operations, while the kernel weights in the t layers are share (i.e., identical weights). Except
the first layer, the input to each layer is the sum of the output from the first layer with that of the previous layer (as
illustrated in Fig. 6).
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Figure 7: Graphical illustration of vector embedding, forming Q, K, and V vectors/matrices, and score matrix
computing (images in the top left and bottom panels were obtained from [8], and the image in the top right panel was
obtained from [9])

3.2 Transformers

Transformer was first introduced by Vaswani et al. in [7] for natural language processing (NLP). The most
important component in the Transformer is the self-attention mechanism. Next, we take look at an example in NLP, and
we briefly describe implementation of the self-attention in 4 steps:

1. The first step is to embed input words into vectors with the uniform length. This embedding is learned by the
neural network, which outputs a vector representation for each word.

2. Add positional embeddings to the vectors. Positional embeddings are essential, and they allow the network to
understand the relative position of each word vector. Otherwise, the positional information would be lost. We
discuss positional embedding in detail in the next section (section 3.2.1).

3. Three vectors from each input vector (i.e., the embedding of each word) are created. These vectors consist
of a Query vector, a Key vector, and a V alue vector. The vectors are created by multiplying (i.e., matrix
multiplication) the embedding vector by three matrices learned by the network during training. Notice that
the Q, K, and V vectors are usually much smaller in dimension than the embedding vectors. For example,
if the embedding vector has a dimension of 512, then the size of the Q, K, and V vectors usually is 64. To
summarize, we create a Query, a Key, and a V alue projection of each input vector in this stage.

4. Calculate scores by doing dot-product between a Q vector and a K vector of each of input embeddings. We
are essentially computing a matrix of similarity scores between the Query matrix and the Key matrix (as
shown in Fig. 7).

5. Finally, these scores are normalized by dividing the score matrix by the square root of the number of dimensions
(e.g., 64). Then, a softmax activation function is applied to the scaled scores to convert them into "probabilities"
(values range in [0, 1]). These "probabilities" are referred to as the attention weights, which are then multiplied
by the V alue matrix. The self-attention mechanism is defined mathematically as:

Attention(Q,K, V ) = softmax

(
Q ·K√

n

)
V. (18)
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Figure 8: Graphical illustration of the sinusoidal positional embedding. (Image in the left panel was obtained from [10],
and the image in the right panel was obtained from [11])

3.2.1 Sinusoidal Positional Embedding

Because the whole sequence of data (sentences in NLP or images in computer vision) is split into pieces (i.e.,
patches), positions or orders of the patches are essential. To embed positional information into a Transformer, an
straightforward solution is adding a piece of information to each embedding about its position in the entire data (i.e., the
whole image or sentence). A naive way to do this is to assign a number to each embedding. However, the problem is that
if the length of the sequence is large, then some embeddings will be added by huge positional embedding values, which
is very unfavorable for network training as the values may be way larger than the information in the patch embeddings.

The sinusoidal positional embedding (SPE) is a simple yet clever solution which satisfies our requirements.
The resulting embedding is not a single number, but it is a d-dimensional vector (the same dimension as the patch
embedding). Image in the left panel of Fig. 8 illustrates the idea of SPE. SPE is defined as:

pt(k) =

{
sin( t

100002i/d
), if k = 2i

cos( t
100002i/d

), if k = 2i+ 1
(19)

Here, t refers to the position of the patch in an image or the "word" in the sequence (e.g., p0 refers tot the position
embedding of the first patch or word), d represents the dimensions of the embedding, and i denotes the index in the tth
positional embedding. In the actual implementation, the embedding size d is often pre-defined or fixed. Image in the
right panel of Fig. 8 presents an example of SPE using d = 128 and tmax = 50 (i.e., 50 words/image patches).

3.2.2 Relative Positioning

An important feature that SPE provides is the relative positioning between an image patch and another. The SPE at
t+ φ can be represented as the linear transformation of the SPE at t:[

sin(wi · (t+ φ))
cos(wi · (t+ φ))

]
=

[
cos(wi · φ) sin(wi · φ)
− sin(wi · φ) cos(wi · φ)

] [
sin(wi · t)
cos(wi · t)

]
. (20)

This property makes it easy for the model to learn to attend by relative positions.

3.2.3 Vision Transformer

Although Transformer was originally proposed for NLP related tasks, recently Dosovitskiy et al. [12] have
successfully demonstrated Transformer’s ability to achieve superior performance in computer vision tasks. The authors
proposed the Vision Transformer (ViT) that is essentially the same as a conventional Transformer architecture used in
NLP. Next, we briefly describe how the ViT works:

1. Split an image into patches. Similar to splitting sentences into individual words in NLP, ViT splits an image
into small patches and flatten the images to form vectors.

2. Produce linear embeddings of the flattened patches (same as step 1 in the section 3.2).

10
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3. Add positional embeddings to retain positional information (see sectopm 3.2.1).
4. Feed the sequence as an input to a conventional transformer encoder.
5. Train the model for image classification tasks.
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