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ABSTRACT

Bones are a common site of metastases in a number of cancers including prostate and breast cancer. Assess-
ing response or progression typically relies on planar bone scintigraphy. However, quantitative bone SPECT
(BQSPECT) has the potential to provide more accurate assessment. An important component of BQSPECT
is segmenting lesions and bones in order to calculate metrics like tumor uptake and metabolic tumor burden.
However, due to the poor spatial resolution, noise, and contrast properties of SPECT images, segmentation of
bone SPECT images is challenging. In this study, we propose and evaluate a fuzzy C-means (FCM) clustering
based semi-automatic segmentation method on quantitative Tc-99m MDP quantitative SPECT/CT. The FCM
clustering algorithm has been widely used in medical image segmentation. Yet, the poor resolution and noise
properties of SPECT images result in sub-optimal segmentation. We propose to incorporate information from
registered CT images, which can be used to segment normal bones quite readily, into the FCM segmentation
algorithm. The proposed method modifies the objective function of the robust fuzzy C-means (RFCM) method
to include prior information about bone from CT images and spatial information from the SPECT image to al-
low for simultaneously segmenting lesion and bone in BQSPECT/CT images. The method was evaluated using
realistic simulated BQSPECT images. The method and algorithm parameters were evaluated with respect to
the dice similarity coefficient (DSC) computed using segmentation results. The effect of the number of iterations
used to reconstruct the BQSPECT images was also studied. For the simulated BQSPECT images studied, an
average DSC value of 0.75 was obtained for lesions larger than 2 cm3 with the proposed method.
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1. INTRODUCTION

While there has been substantial work on segmentation for other image modalities, there has been limited
work for SPECT.12 Segmenting SPECT/CT images is challenging due to the poor spatial resolution and noise
properties of SPECT images.1 As a result, manual segmentation is mostly commonly used clinically, resulting
in intra- and inter-observer bias and variability. This work aims at developing a semi-automated method of
classifying voxels into soft-tissue, lesion, and bone in quantitative bone SPECT (BQSPECT) images. The
research is part of our efforts on developing improved methods for bone and tumor segmentation in patients with
bone metastases.2 The method we propose here is based on the fuzzy C-means (FCM) algorithm for identifying
clusters of voxels belonging to the same structures. The noise and resolution properties of the images result
in substantial classification errors when applying FCM to SPECT images. The Robust FCM (RFCM) method
improves on this by incorporating spatial information that accounts for the cluster distribution in the surrounding
voxels.3 However, we observed that the RFCM method was not successful in classifying bone voxels. We thus
propose to augment the spatial information in the SPECT images with anatomical information from registered
low-dose CT images. Such CT images are routinely acquired for anatomical localization and to provide an
attenuation map when patients are imaged with SPECT/CT systems. The proposed algorithm, Robust fuzzy
C-means with prior information (RFCM-p), incorporates the CT information via a prior function. In particular,
a term was added to the RFCM objective function to penalize the segmentation differences between CT and
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SPECT image segmentation. We investigated 2 proposed methods for adding the prior information: RFCM-
p1 and RFCM-p2. Our proposed RFCM-p1 method incorporates a soft-membership prior; RFCM-p2 method
incorporates a hard-membership prior information that is taken from the clustered CT image.

A flow chart of the proposed algorithm is shown is shown in figure 1. A 3D region of interest (ROI) and
seed pixels are selected prior to the segmentation process. The segmentation is performed only within this ROI.
The seed voxels are used in the region growing algorithm and not in the clustering, as described below. During
the segmentation process, bone segmentation is first obtained by applying a binary region growing method on
a label map that is clustered by the RFCM. Then, the segmented bone regions are used as prior information
in the RFCM-p2 method for clustering the SPECT image. In the last step, a binary region growing method is
applied to obtain the final segmentation of the bone and the lesion regions in SPECT image. The region growing
algorithm checks 26-connected neighbors of the seed voxels to determine whether they should be included in
segmented region containing the seed voxel. Figure 2 shows an example slice of a selected 3D ROI in the CT
and SPECT image.

Figure 1: Overview of algorithmic pipeline.
Figure 2: Images (a) and (b) contain an example sagittal
slice of 3D ROI selection in the CT (left) and the SPECT
(right) images.

2. METHODS

2.1 The conventional FCM algorithm

FCM clustering algorithm was proposed by Bezdek in 1984; it is an improvement of the hard membership
K-means algorithm.4 The algorithm assigns membership of each cluster to a given voxel, depending on the
similarity of the voxel intensity value to a particular cluster relative to all other clusters. Similar to K-means,
FCM is an iterative optimization algorithm that minimizes the objective function:

JFCM =
∑
j∈Ω

C∑
k=1

uqjk‖yj − vk‖
2, (1)

where Ω is the image domain, C is the number of classes, u represents the membership function, yj is the
observation at jth voxel, vk is the centroid of kth class, and the parameter q is a weighting exponent that satisfies
q > 1 and it controls the amount of fuzzy overlap between clusters.4 Larger q values allow for a greater degree
of overlap between the voxel values in clusters(and vice versa). The optimization problem of objective function
is given by:

min
ujk,vk

JFCM , s.t.

{∑C
k=1 ujk = 1, ∀j ∈ Ω

0 <
∑

j∈Ω ujk < N, k = 1, ..., C
. (2)

When JFCM is minimized, the larger membership values are assigned to voxels where the observations are
closer to the class centroid, and lower membership values are assigned to voxels where the observations are
further from the class centroid.
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2.2 The robust FCM algorithm

The objective function of conventional FCM algorithm in 1 does not take into consideration any spatial infor-
mation. Thus, the membership functions can be affected by noise, producing a noisy clustering (i.e., clustering
where there are voxels with vastly different membership function values than all their neighbors). The RFCM
was developed to overcome this shortcoming by adding a spatial smoothness term. The new objective function
is defined as:3

JRFCM =
∑
j∈Ω

C∑
k=1

uqjk‖yj − vk‖
2 +

β

2

∑
j∈Ω

C∑
k=1

uqjk

∑
l∈Nj

∑
m∈Mk

uqlm, (3)

Here, the term Nj denotes the 26-connected neighbors of the jth voxel, Mk represents the classes {1, ..., C} \ {k}
(i.e., classes other than k), and β controls the weight of spatial smoothness term. The spatial smoothness term
constrains the membership value of a class to be negatively correlated with the membership values of the other
classes in neighboring pixels.3

2.3 RFCM algorithm with prior information

Our first proposed method, RFCM-p1, is based on a new formulation of the objective function of the RFCM
algorithm to incorporate the CT prior information. By introducing a new regularizing term, the new objective
function can be written as:

JRFCM−p1 =
∑
j∈Ω

C∑
k=1

uqjk‖yj − vk‖
2 +

β

2

∑
j∈Ω

C∑
k=1

uqjk

∑
l∈Nj

∑
m∈Mk

uqlm + γ
∑
j∈Ω

C∑
k=1

uqjk

∑
m∈Mk

(u
(CT )
jm )q, (4)

in the new regularizing term, the membership function u(CT ) is obtained by applying the RFCM algorithm to
the CT image. The new term penalizes the differences between the segmentation obtained using the CT and
the SPECT images, and the strength of the penalty is controlled by the parameter γ. Note that when β = 0
and γ = 0, the equation 4 is identical to the objective function of the conventional FCM (1). By applying the
Lagrange multiplier method to minimize JRFCM−p1, an iterative algorithm for computing ujk and vk can be
obtained:

ujk =
(‖yj − vk‖2 + β

∑
l∈Nj

∑
m∈Mk

uqlm + γ
∑

m∈Mk
(u

(CT )
jm )q)

−1
q−1∑C

i=1(‖yj − vi‖2 + β
∑

l∈Nj

∑
m∈Mi

uqlm + γ
∑

m∈Mi
(u

(CT )
jm )q)

−1
q−1

(5)

and

vk =

∑
j∈Ω u

q
jkyj∑

j∈Ω u
q
jk

. (6)

When minimizing the objective function, the new regularizing term tends to increase the ujk when the CT

membership value of other classes (i.e. u
(CT )
jm , where m ∈ {classes}\{k}) is small and encourages the membership

values in each voxel to be similar to the CT membership values in the corresponding CT voxel.

Note that RFCM-p1 requires the number of classes in ujk to be the same as in u
(CT )
jm . Yet, the number of

classes in SPECT and CT images might be different. In case of bone imaging, the CT image of bone contains four
classes (soft tissue, cortical bone, trabecular bone, and bone lesion), but in SPECT images only three classes are
readily identified (soft tissue, bone, bone lesion): Because of the low spatial resolution, SPECT usually cannot
differentiate cortical bone and trabecular bone. Merging soft membership values of different classes requires some
post-processing on the membership function. A trivial solution is to combine hard membership functions (labels).
The next subsection explains the process of combining hard memberships of cortical bone and trabecular bone
as one type. Alternatively, the regularizing term can be modified to incorporate hard memberships, z(CT ), of
the clustered CT image. The objective function of our second proposed method, RFCM-p2, is defined as:

Proc. of SPIE Vol. 10949  109491W-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



JRFCM−p2 =
∑
j∈Ω

C∑
k=1

uqjk‖yj − vk‖
2 +

β

2

∑
j∈Ω

C∑
k=1

uqjk

∑
l∈Nj

∑
m∈Mk

uqlm + γ
∑
j∈Ω

C∑
k=1

uqjk

∑
m∈Mk

(z
(CT )
jm )q, (7)

where z(CT ) is defined as:

z
(CT )
jk =

{
1, if voxel j is in class k
0, otherwise

. (8)

Minimizing JRFCM−p2 with the Lagrange multiplier method yields:

ujk =
(‖yj − vk‖2 + β

∑
l∈Nj

∑
m∈Mk

uqlm + γ
∑

m∈Mk
(z

(CT )
jm )q)

−1
q−1∑C

i=1(‖yj − vi‖2 + β
∑

l∈Nj

∑
m∈Mi

uqlm + γ
∑

m∈Mi
(z

(CT )
jm )q)

−1
q−1

, (9)

and vk remains the same as equation 6.

Since the objective function likely has local minima, and the algorithm is not guaranteed to be globally
convergent, the choice of initial conditions is important. In the proposed method, instead of generating random
initial centroids vk, the initial guess for each cluster center vk is obtained using the K-means clustering algorithm.
The intensity values were normalized before executing the clustering algorithm. The convergence of the algorithm
was judged based on changes in the cluster centroid or the membership function at two successive iterations.

2.4 Extract clustered regions in CT

Seed voxels were used to provide information to identify cortical and trabecular bone clusters in the CT image.
In the consideration of the discontinuity of bone structures in space, all regions that contain the class label of
the seed voxel of the bone were identified as segmented bone regions. Finally, the label maps of cortical and
trabecular bone regions were merged, as shown in Figure 3, to form the bone region.

Figure 3: (a) shows the cropped 2D slice of the 3D CT image. (b) displays an example of clustering result by
RFCM. (c) and (d) contains the segmentation results for cortical bone and trabecular bone respectively. (e)
shows the combined label map of bone.

2.5 Extract clustered regions in SPECT

2.5.1 Extract regions that have the same label as seed voxel (Bone segmentation)

We applied the same strategy discussed above to extract bone regions from clustered QSPECT images.

2.5.2 Extract regions that have the same label as seed voxel (Lesion segmentation)

We used the binary region growing method described in 5 to identify the final lesion regions. Due to noise, the
seed voxel may be falsely classified as part of some other class. To ensure the correctness of the seed voxel, we
applied a 3 × 3 × 3 cubic box around the seed voxel. The lesion label of the seed was changed to the class that
had maximum number of voxels in the cubic box surrounding the seed voxel. The voxels belonging to this class
were then used as the starting points of the region growing method. The algorithm stopped when voxels with
different labels were encountered.
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2.6 Selection of parameters

The parameters of the algorithm were separately optimized for the CT and SPECT images. The optimal
parameters were chosen based on the mean dice similarity coefficients (DSC) over the lesions and noise realizations
investigated. We used the following procedure.

• First, for the RFCM algorithm, we found the value of β that produced the highest DSC between the true
bone regions and segmented CT bone regions.

• The optimal number of iterations in the generation of SPECT image was chosen based on the best mean
DSC of lesion segmentations using RFCM-p2. During this process, we kept γ as 0 and varied β in RFCM-p2.

• The optimal β and γ in RFCM-p2 for segmenting SPECT images with the optimal number of reconstruction
iterations for a specific range of lesion sizes were then found.

2.7 Image simulation

The basis for the simulation were 3D activity and attenuation distributions based on the realistic NURBS-based
XCAT phantom.6 Attenuation values were computed based on the material compositions of the materials and
the attenuation coefficients of the constituents at 140 keV, the photon energy of Tc-99m. The bones had an
uptake of 10 times the soft-tissue background. Sclerotic bone lesions with increased attenuation coefficient and
radio-pharmaceutical uptake were modeled. Seventy-three bone lesions with sizes ranging from 0.2 to 0.5 cc,
uptakes ranging from 3.5-4.5 times that of normal bone, and attenuation coefficients from 13-37% greater than
normal bone were modeled.

CT images used in this study were simulated by adding Poisson distributed noise to the attenuation map of
the phantom to model a low-dose CT acquisition. SPECT projections were simulated using an analytic projection
algorithm that realistically models attenuation, scatter, and the spatially-varying collimator-detector response.78

A total of 50 independent noise realizations were generated. BQSPECT images were reconstructed from these
using a quantitative image reconstruction method9 based on the ordered subsets expectation-maximization algo-
rithm10 (OS-EM). A total of 1 simulated CT image and 350 simulated SPECT (50 noise realizations from each
of iterations 1, 2, 5, 10, 20, 30 and 40) images were used to evaluate the methods

3. RESULTS

Due to the different number of classes in the CT and BQSPECT clustering, we only applied and evaluated the
RFCM-p2 algorithm. The algorithms were applied to three dimensional CT and SPECT image; a twenty-six
voxel neighborhood system was used for the spatial smoothness term. For segmenting the CT volume, q = 2 and
C = 4 were used in RFCM, where the four classes corresponded to soft tissue, cortical bone, trabecular bone,
and lesion; For segmenting SPECT volume, q = 2 and C = 3 were used in RFCM-p2, where three classes were
soft tissue, bone, and lesion.

Figure 4 shows examples of the original BQSPECT and CT images; The red and green curves in the images
represent true bone and lesion region outlines, respectively. Figure 5a shows the true bone regions in that slice;
figures 5b-5d show segmented bone regions in CT image using RFCM with β = 0, 0.005, and 0.01, respectively.
As β increases, the outlines of the segmented bone regions become smoother. Figures 6a-6d present segmented
BQSPECT images with β = 0.0005 and γ = 0.005, 0.01, and 0.05 respectively from the RFCM-p2 algorithm,
where the red curves indicate segmented bone regions and green curves indicate segmented lesion regions. The
resulting images suggest that as gamma increases the differences between segmented bone regions from SPECT
and CT images become smaller.

In all cases, the segmentation results were compared to the lesion and bone ground truth labels, which
were known for this realistic simulated data. As shown in Figures 7 and 8, the optimal β for RFCM CT
bone segmentation was 0.0064, and the optimal number of reconstruction iterations was 2 for the RFCM-p2
segmentation of the BQSPECT images. Table 1 shows the β and γ values and corresponding evaluated DSC
values for different ranges of lesion sizes averaged over the 50 different noise realizations. The standard deviation
of the DSC values for the various size rangers were calculated from the 50 noise realizations. DSC larger than
0.7 were obtained for lesion sizes larger than 2 cm3, which may be regarded as a good segmentation result.1112

Proc. of SPIE Vol. 10949  109491W-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 4: Image (a) shows the
CT image. (b) shows the SPECT
image (2 iterations). Red con-
tours indicate bone ground truth
and green contours indicate lesion
ground truth.

Figure 5: Yellow regions in all im-
ages represent bone regions. (a)
shows the ground truth bone re-
gion. (b), (c), and (d) show seg-
mented bone regions from the CT
image with β = 0, 0.0005, and 0.001
respectively.

Figure 6: Red contours in the im-
ages represent segmented bone re-
gions and green contours indicate
lesion regions. The segmentation
result in image (a) was obtained
with β = 0.0005 and γ = 0. The
segmentation results in images (b),
(c), and (d) were obtained with β =
0.0005 and γ = 0.005, 0.01, and
0.05, respectively.

Figure 7: Mean over lesions (0.5 to 5 cc in lesion vol-
ume) of DSC values as a function of β for the RFCM
method used to segment the CT images.

Figure 8: Mean DSC over all lesions with volumes 0.5
to 5 cc and noise realizations as a function of the iter-
ation number and β for the RFCM-p2 method applied
to the SPECT images using the class labels from the
RFCM segmentation of the CT images obtained using
the value of β that gave the highest DSC in Figure 7.

4. CONCLUSION

Because of their challenging noise and resolution characteristics, there has been limited work on segmentation
of SPECT images.15 The proposed work presents a novel semi-automatic 3D approach for segmenting bone and
lesion in BQSPECT images. The proposed RFCM-pn algorithms is a modified RFCM clustering algorithm to
incorporate prior information from CT images; it is also suitable for clustering other multi-modality images, such
as PET/CT and PET/MRI. The new penalty functions can also be readily applied to other variants of FCM,
such as FCM S13 and FLICM14. In this paper, we discussed the application of the algorithm on the simultaneous
segmentation of the bone lesion and bone structures in the context of quantitative Tc-99m MDP QSPECT/CT
images. The resulting DSC values reported in this paper show that the proposed approach is an effective method
for lesion and bone segmentation in BQSPECT images for lesions larger than 2 cc in volume. The results also
suggest that RFCM-p algorithm is suitable for performing image clustering on any multi-modality images.
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Lesion size (cm3) β γ Avg. DSC (lesion) Avg. DSC (bone)

4-5 0.0001 0.004 0.785 (± 0.026) 0.777 (± 0.008)
3-4 0.0016 0.002 0.747 (± 0.030) 0.820 (± 0.023)
2-3 0.0002 0.008 0.717 (± 0.018) 0.709 (± 0.030)
1-2 0.0004 0.001 0.618 (± 0.010) 0.647 (± 0.026)
0-1 0.0016 0.064 0.512 (± 0.016) 0.637 (± 0.020)

Table 1: Results for SPECT images reconstructed with 2 iterations (12 subsets) in terms
of the highest average DSC and corresponding lesion size, β, and γ values.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Cancer Institute, U01-CA140204. The views expressed in
written conference materials or publications and by speakers and moderators do not necessarily reflect the official
policies of the NIH; nor does mention by trade names, commercial practices, or organizations imply endorsement
by the U.S. Government.

REFERENCES
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