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Abstract

Purpose: We propose a deep learning-based anthropomorphic model observer (DeepAMO) for
image quality evaluation of multi-orientation, multi-slice image sets with respect to a clinically
realistic 3D defect detection task.

Approach: The DeepAMO is developed based on a hypothetical model of the decision process
of a human reader performing a detection task using a 3D volume. The DeepAMO is comprised
of three sequential stages: defect segmentation, defect confirmation (DC), and rating value infer-
ence. The input to the DeepAMO is a composite image, typical of that used to view 3D volumes
in clinical practice. The output is a rating value designed to reproduce a human observer’s defect
detection performance. In stages 2 and 3, we propose: (1) a projection-based DC block that
confirms defect presence in two 2D orthogonal orientations and (2) a calibration method that
“learns” the mapping from the features of stage 2 to the distribution of observer ratings from the
human observer rating data (thus modeling inter- or intraobserver variability) using a mixture
density network. We implemented and evaluated the DeepAMO in the context of 99mTc-DMSA
SPECT imaging. A human observer study was conducted, with two medical imaging physics
graduate students serving as observers. A 5 × 2-fold cross-validation experiment was conducted
to test the statistical equivalence in defect detection performance between the DeepAMO and the
human observer. We also compared the performance of the DeepAMO to an unoptimized imple-
mentation of a scanning linear discriminant observer (SLDO).

Results: The results show that the DeepAMO’s and human observer’s performances on unseen
images were statistically equivalent with a margin of difference (ΔAUC) of 0.0426 at p < 0.05,
using 288 training images. A limited implementation of an SLDO had a substantially higher
AUC (0.99) compared to the DeepAMO and human observer.

Conclusion: The results show that the DeepAMO has the potential to reproduce the absolute
performance, and not just the relative ranking of human observers on a clinically realistic defect
detection task, and that building conceptual components of the human reading process into deep
learning-based models can allow training of these models in settings where limited training
images are available.
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1 Introduction

Often, the quality of a medical image is measured in terms of the physical properties of the
image, such as image contrast, spatial resolution, and noise level.1 Fidelity-based measures, such
as root mean squared error, peak signal-to-noise ratio, and structural similarity index, have also
been widely used in the medical imaging community. These measures are appealing because
they are relatively easy to compute, have straightforward physical interpretations, and can pro-
vide objective quantitative measures of image quality. However, they are not directly related to
the diagnostic task that is performed with the images and thus may not be clinically relevant.
Clinically relevant image quality assessment should be with respect to the task that is to be
performed.2–8 Ideally, the observers would be drawn from the population of people performing
the task, i.e., for medical images, a radiologist or nuclear medicine physician. However, in prac-
tice, especially in large-scale developmental research studies, the use of human observers (and
especially physicians) is too time-consuming, inconvenient, and expensive. Thus a great deal of
work has gone into the development of anthropomorphic model observers that predict human
observer performance.9–12

Task-based measures of image quality based on model observers have been advocated by
several investigators over the years, starting from Harris,13 and including Hanson and Myers,14

Wager et al.,15 Judy et al.,16 and Myers et al.9,17 However, existing model observers are often not
directly applicable to diagnostic tasks of clinical relevance.18 For example, as described below,
commonly used model observers are strictly valid only for signal-location-known (exactly and
statistically) tasks. In addition, although these observers predict rankings of human observer
performance, they often require the use of concepts such as internal noise to match the absolute
performance of human observers.

Of the existing anthropomorphic observer models, the channelized Hotelling observer
(CHO) has been the most widely used as a substitute for human observers in signal-loca-
tion-known tasks in nuclear medicine imaging research.19 The CHO has been shown to correlate
well with human observer performance on signal-known-exactly/background-known-exactly
(SKE/BKE) tasks,9,20 SKE/background-known-statistically (BKS) (e.g., lumpy backgrounds)
tasks,21 and SKE-realistic anatomical backgrounds tasks.22–24 However, in those tasks, the
observer is asked to decide whether the defect is present or not at a specified location. A more
clinically relevant detection task is the signal-known-statistically (SKS)/BKS task, where vari-
ability can be present in both the signal and background. Here signal variability refers to
differences in signal (defect) shape, size, orientation, or texture. Background variability can
come from two sources: quantum noise and anatomical variability. Modeling the latter is impor-
tant in order to model clinical tasks where patients can vary substantially in size, shape, and
uptake pattern. It is important to model these image features, especially in studies such as virtual
clinical trials, in order to accurately model performance on images from patient populations. For
these clinically more realistic SKE/BKS and SKS/BKS tasks, there is evidence that rankings or
ranking trends of human observers and the CHO are correlated for different noise levels,24,25

reconstruction methods and phantom populations,26 imaging systems,27 compensation methods,
and postfilter cutoff frequencies.22 Scanning forms of the CHO can be applied for the clinically
more realistic SKS/BKS tasks to analyze each location within a particular region of interest as a
potential defect site.18 However, images and defects investigated in this work did not have closed
form expressions for the linear discriminant and ensemble methods were thus used in estimating
the observer. This necessitates the use of a relatively large number of images. Since the defects
and background were not spatially invariant, the linear discriminant would have to be evaluated
at each potential defect location. Thus for the case of 3D images and a large number of potential
defect sites, scanning observers based on the linear discriminant and CHO can be quite
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computationally intensive. The use of channels reduces the computational demands, but they do
remain significant.28 Partly for these reasons, previous attempts at using scanning observers on
multi-orientation, multi-slice images have focused on reducing the search region, i.e., use a front-
end search process28 to obtain a subset of the original search location set, and simplifying the
defect confirmation (DC) process by simulating a simpler SKE/BKE detection task, etc.29,30

In addition to the above limitations, existing model observers often predict rankings but not
the absolute performance of human observers.28–31 For imaging system optimization or compari-
son studies, this can be sufficient, but for other applications, such as selecting imaging time,
administered activity (AA), or radiation dose, prediction of absolute performance measures
is required.8 Obtaining absolute agreement for these model observers typically is done with the
addition of observer internal noise.28 The calibration process is a parameter search exercise
where the goal is to find the value of an internal noise parameter that matches performance
between the model and human observers. Note that the calibration process is often performed
for one specific combination of signal (shape, size, and orientation) and noise level, and it is
unclear the degree to which the calibration generalizes to other situations.

Another gap between current anthropomorphic observers and the real clinical task is that
current model observers have been primarily designed for analyzing 2D images. By contrast,
many clinical tasks require the interpretation of 3D datasets. This often involves reviewing
sequences of 2D slices in three orthogonal orientations (coronal, sagittal, and transaxial).
Existing multi-slice32,33 or 3D model observers34–38 are either for SKE tasks only or single-
orientation SKS tasks.32

In this paper, we propose a novel deep learning-based anthropomorphic model observer
(DeepAMO) that evaluates multi-orientation, multi-slice image sets to model the clinical diag-
nostic process of a radiologist or nuclear medicine physician in a clinically realistic 3D defect
detection task. The DeepAMO was evaluated on an SKS/BKS tasks using a realistic anatomical
background with variation in organ uptake and defect position (and thus orientation and shape).
We also propose a novel calibration method that “learns” the underlying distribution of the
human observer rating values (including the internal noise) using a mixture density network
(MDN). Note that in this context a rating value is the raw data from human observer study and
is a numeric value expressing the observer’s level of confidence that a defect is present or absent
in a given image. The entire network is trained using human observer rating values so that the
output, when applied to an input image volume, is a rating value designed to reproduce the
performance of human observers.

A human observer study was conducted using the volumetric display format routinely used at
Boston Children’s Hospital (BCH) for clinical interpretation. Quantitative comparisons of the
performance between the DeepAMO and human observer are provided in Sec. 3.

2 Materials and Methods

Image quality in this work was measured in terms of performance on the task of detecting renal
functional defects in 99mTc-DMSA SPECT. The images used were simulated based on an
anthropomorphic digital phantom of 5-year-old (a typical age in DMSA imaging). The phantom
and simulation methods are described in Ref. 39. The simulation modeled administered activities
(and thus noise levels) based on the North America Consensus Guidelines.40 Task performance
was evaluated using both human observers and the proposed DeepAMO. Both of these observers
produced a set of rating values for images where the true defect status was known. These rating
values were analyzed using receiver operating characteristic (ROC) analysis methods.41 The area
under the ROC curve (AUC) served as a figure of merit for task performance.

2.1 Data Simulation

The projection data for this study were generated using the Advanced Laboratory for Radiation
Dosimetry Studies UF NHANES-based phantom.42 The pediatric phantom used was developed
at the University of Florida based on demographic data from the CDC’s National Health and
Nutrition Examination Survey (NHANES) data.43 For this study, we used a 5-year-old male
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phantom with average girth and kidney size. The phantom was digitized using 0.1-cm cubic
voxels. Activity uptake in the kidneys was modeled using data from a single imaging time point
(3 h postinjection). A dataset of 47 patients acquired at the BCH was used to estimate the means
and standard deviations of kidney uptake in units of activity.

The model previously described in Refs. 44 and 45 was used to simulate defects in the cortical
wall of the right kidney consisting of volumes of reduced uptake consistent with focal, acute pyelo-
nephritis. The defects were created at random locations (excluding the area close to the renal pelvis)
along the cortical wall. Based on input from an experienced pediatric nuclear medicine specialist,
we selected a defect volume of 0.5 cm3 as a defect size that is clinically relevant for the 5-year-old.

Using this model, we created four randomly located focal transmural renal defects at each of
the following macrolocations on the right kidney cortex: upper pole, lower pole, and lateral.
There was a total of 12 random locations for the defects generated in this study, modeling
an SKS task. We simulated noise-free projection data for the renal cortex, medulla, pelvis, liver,
spleen, and background (including all other organs), modeling the physics and acquisition
parameters appropriate for 99mTc renal SPECT. The renal activity and relative activity concen-
trations for structures inside the kidney (the renal cortex, medulla, and pelvis) were randomly
sampled from truncated Gaussian distributions with the means, standard deviations, minima, and
maxima derived from the patient data acquired at BCH. Parameters for the distributions can be
found in Ref. 45. Each single-organ projection was scaled by the product of AA, acquisition
duration, and scanner sensitivity. The projections were generated using an analytic projection
code that modeled attenuation, the spatially varying collimator-to-detector response,46 and
object-dependent scatter.47 The code has been previously validated by comparison to Monte
Carlo and experimental projection data for imaging of a variety of radionuclides.48–56

In this study, the projections were simulated to model a Siemens low-energy, ultra-high-
resolution collimator used routinely at BCH for pediatric DMSA studies. Each single-organ pro-
jection dataset was generated at 120 projection views over a 360-deg body-contouring orbit with a
0.1-cm projection bin size and then collapsed to a bin size of 0.2 cm. A model of the patient bed
obtained from a CT scan of the bed of a Siemens Symbia SPECT/CT system was added to the
attenuation map of each computational phantom. Noise-free projection images of the entire phan-
tom were obtained by summing the individual sets of scaled organ projections. Noisy projections
were created by simulating Poisson noise using a Poisson pseudo-random generator.

A total of 384 projection images were thus generated, comprised of 16 uptake realizations ×
12 defect locations × 2 defect statuses (present or absent). The mean (noise-free) activity dis-
tribution was statistically independent for each of these 384 projection images since the kidney
uptake and the activity concentration ratio of the cortex to the medulla plus pelvis activity were
randomly sampled.

We followed the clinical reconstruction protocol routinely used at BCH. Projection images
were reconstructed using the OS-EM iterative reconstruction algorithm with compensation for
the geometric collimator-detector response and postfiltered with a Gaussian filter with an
FWHM of 5 mm. The reconstructed images were then interpolated and formatted to match the
volumetric image display used at the BCH. In this display, 10 coronal, 20 sagittal, and 18 trans-
axial images with sizes of 96 × 96 pixels were generated. These composite images were used for
training and testing of the proposed model observer and the human observers. Windowing was
used to map the image pixel values to a range of 0 to 255. A sample of BCH’s volumetric image
display is shown in Fig. 1.

2.2 Proposed Model Observer: Overview

The DeepAMO is designed based on a hypothetical model of the image interpretation process of
a human observer. One alternative of this approach would be to let the neural network “learn”
how humans interpret 3D image volumes from the data. For example, the most direct approach
would be to input the 3D image volume data into a fully connected network and then to train that
network directly with human observer rating values. Such a network would have a large number
of parameters. Since each trial (reading of a set of images by a human observer) provides a single
scalar rating value, it provides relatively little information for training the network. A very large
number of input rating values would thus be required. Since the rating value data are very
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expensive to obtain, we have divided the network into stages that are designed to require less
human-observer training data. The division of the model is based on how humans interpret the
images, as will be described below. The first two stages do not require human observer training
data, and the third one maps a low-dimensional feature vector to a scalar rating value.

We hypothesize that a human observer interpreting an image first scans over the orthogonal
slices to identify suspicious abnormalities in single slices. If a defect is suspected to be present in
one slice (of a particular orientation), the observer confirms that on adjacent slices. The observer
would confirm that a defect in one orientation is seen in the other two orthogonal orientations.
We suppose that the observer would have more confidence in the presence of a defect if it is
found in at least one other orientation.

Thus we propose to implement this decision-making process in three sequential stages. In
stage 1, we use a segmentation network to identify defects in three orthogonal slice views. The
segmentation is performed using groups of three adjacent slices. In stage 2, we use a determin-
istic algorithm that confirms the presence of defects in the three orthogonal views and generates a
low-dimensional feature vector. In stage 3, we use a MDN to learn the mapping of feature vector
to rating value, thus calibrating the DeepAMO to reproduce human observer performance.

2.3 Proposed Model Observer: Architecture

A schematic of the proposed DeepAMO is shown in Fig. 2. The input to the segmentation net-
work was the same set of slices used in the previously described volume display used in clinical

Fig. 1 A sample 48-slice image shown in the volumetric display format routinely used in clinical
practice at BCH. The red arrow indicates the location of the functional defect.
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practice, which consists of multiple slices in each of the three orientations: coronal, sagittal, and
transaxial. Mathematically, the slice, Sikðm; nÞ, and input composite image, Iðm; n; qÞ, are related
as follows:

EQ-TARGET;temp:intralink-;e001;116;210Iðm; n; qikÞ ¼ Sikðm; nÞ: (1)

In Eq. (1), qik is the index number for the i’th slice in the slicing direction k ∈ ðc; s; tÞ, and m, n,
and q are pixel indices for the x, y, and z axes, respectively.

For each orientation, Nk − 2 (Nk slices in each orientation) triads are generated: the first and
last slices cannot act as the central slice for a triad. The j’th triad in the slicing direction k is

EQ-TARGET;temp:intralink-;e002;116;130Tj
kðm; n; qÞ ¼ fSj−1k ðm; nÞ; Sjkðm; nÞ; Sjþ1

k ðm; nÞg; j ∈ ½1; Nk − 2�: (2)

The output segmentation mask (SM) of each triad is a 2D binary mask of pixels thought to be in
the defect. The SMs along each orientation are summed to form a summed segmentation mask
(SSM) in order to enhance the defect signal(s) that is (are) present in that orientation. That is:

Fig. 2 A schematic of the proposed model observer, DeepAMO. I is the multi-slice, multi-view
input image, T j

k is the triad, where k ∈ ðc; s; tÞ represents the slicing direction and j ∈ ½1; N − 1�,
where N is the number of slices in each orientation. SMj

k is the output segmentation mask for each
triad T j

k . TVDk is the TVD seen in each slicing direction computed by summing the corresponding
SSMk . SSMk is the summed segmentation mask along each slicing direction k . HPk and VPk are
horizontal and VP of the corresponding SSMk . DCcs, DCct, and DCst are the three defect confir-
mation scalars from the defect confirmation network. Note that one triad is fed to the segmentation
at a time.
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EQ-TARGET;temp:intralink-;e003;116;735SM
j
kðm; nÞ ¼ f½Tj

kðm; n; qÞ�; (3)

EQ-TARGET;temp:intralink-;e004;116;699SSMkðm; nÞ ¼
Xnk
j¼1

SM
j
kðm; nÞ; (4)

where j is the triad number and k is the slicing direction. Tj
kðm; n; qÞ and nk represent the j’th

triad and the number of triads in slicing direction k, respectively. Here fð·Þ denotes the segmen-
tation network.

We propose to implement the process of confirming defect presence in other slicing direc-
tions, by projecting and comparing defect information from different slicing directions, through
a DC network. Specifically, this is implemented by projecting (i.e., summing) each SSMk ver-
tically and horizontally and calculating the dot products between the resulting horizontal pro-
jections (HP) and vertical projections (VP) from different slicing directions. The HPs and VPs
are derived as follows:

EQ-TARGET;temp:intralink-;e005;116;560HPkðnÞ ¼
XM−1

m¼0

SSMkðm; nÞ; (5)

EQ-TARGET;temp:intralink-;e006;116;498VPkðmÞ ¼
XN−1

n¼0

SSMkðm; nÞ; (6)

where M and N are the number of pixels in the x and y axes directions, respectively.
The projection is constructed so that the projections from the different slicing directions are

along the same direction in space. To understand this, consider that any two views always share a
common axis, and, by projecting the two views onto this common axis, we can confirm infor-
mation about defect location that is compatible. For example, consider an L-shape object in a 3D
space (Fig. 3). By projecting the sagittal and transaxial views vertically, we get two 1D vectors
that both contain information about the object’s maximum length along the horizontal axis. If the
dot product between the two 1D vectors is large, then the object is present at the same location in
that direction for both slicing directions. Likewise, we can confirm the object’s location along the
other two directions via the same projection and dot product operations. This process yields three
scalar values, representing the defect agreement along the x, y, and z axis, respectively. We
named these three scalar values the DC scalars. They are derived from the HPs and VPs from
different slicing directions as follows:

Fig. 3 An illustration of the process of confirming the defect from different views using projection
and dot product in 3D space.
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EQ-TARGET;temp:intralink-;e007;116;735DCcs ¼ HPcðnÞ · VPsðmÞ; (7)

EQ-TARGET;temp:intralink-;e008;116;701DCct ¼ HPtðnÞ · VPcðmÞ; (8)

EQ-TARGET;temp:intralink-;e009;116;679DCst ¼ VPtðmÞ · VPsðmÞ: (9)

The DC scalars are concatenated with the total volume of the defect (TVD) seen in each slicing
direction to form a single feature vector. The TVD from each slicing direction is computed as
follows:

EQ-TARGET;temp:intralink-;e010;116;634TVDk ¼
XM−1

m¼0

XN−1

n¼0

SSMkðm; nÞ: (10)

The resulting six-element concatenated feature vector is then sent to an MDN57 to generate the
rating (test statistic) value. The dense layers in the MDN are meant to model the process of a
human making the final decision using combined information from the different directions. The
output of the MDN is the set of parameters of a statistical distribution, in this case, a Gaussian
mixture model (GMM), as described below.

2.4 Calibration to Human Observer Data via a Mixture Density Network

For defect detection tasks, the observer performance is usually measured by the AUC, which
ultimately depends on the underlying distribution of the rating values given by the observer.
Thus for the purposes of replicating an observer’s AUC, we propose to directly learn the
mapping of feature vectors to the distribution of the rating values. We hypothesize that more
training and testing samples would help better capture the underlying rating value’s distribution.
However, demonstrating the equivalence of the distributions is a task requiring a large number
of rating values. In addition, it is unclear what level of agreement between the true and mod-
eled distribution is required. Thus we are focusing in this work on verifying that the model
observer can replicate the AUC values obtained from the set of rating values resulting from
an observer study.

A MDN was chosen for the task of mapping the input feature vector into a rating value in
order to model the fact that a human observer will give a different rating value for the same input
image. The MDN provides parameters of a distribution that can then be sampled to provide
multiple, continuously valued ratings from a single set of input feature vectors. This can be
useful during testing of the DeepAMO to reduce sampling error.

Typically, an MDN learns an entire probability distribution for the output by modeling the
conditional probability distribution of the target data conditioned on the input data. In our case,
the desired conditional probability distribution is PðrjXÞ, where X ¼ ½x1;: : : ;x6� is a six-element
feature vector and r is a (continuous) human observer rating value for a given input feature
vector. For the purpose of modeling any arbitrary probability distribution, the MDN uses a
GMM as the conditional probability density function, which can be represented as a linear com-
bination of kernel functions in the form:

EQ-TARGET;temp:intralink-;e011;116;222PðrjXÞ ¼
Xm
i¼1

πiðXÞϕiðrjXÞ; (11)

where m is the number of components in the mixture and fπiðXÞg is the set of mixture coef-
ficients for the kernel functions, which sum to 1. The set fπiðXÞg is derived from the output of
the MDN and is converted to a set of probabilities as follows:

EQ-TARGET;temp:intralink-;e012;116;138πiðXÞ ¼
πiP
m
i¼1 πi

; (12)

where πi is the output from the last dense layer, as shown in Fig. 2. The kernel functions
fϕiðrjXÞg are in the form of Gaussian distributions:

Li et al.: DeepAMO: a multi-slice, multi-view anthropomorphic model observer. . .

Journal of Medical Imaging 041204-8 Jul∕Aug 2021 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 04 Jun 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



EQ-TARGET;temp:intralink-;e013;116;735ϕiðrjXÞ ¼
1

σiðXÞ
ffiffiffiffiffi
2π

p exp

�
−
½r − μiðXÞ�2
2σiðXÞ2

�
; (13)

where σiðXÞ and μiðXÞ are the estimated standard deviation and mean for the input feature vector
X and they come from the output of the last dense layer. Each mean and standard deviation is for
a particular mode [with the mixing coefficient πiðXÞ] in the GMM. Note that fπiðXÞg is a func-
tion of X. So fπiðXÞg can also be regarded as a set of prior probabilities of the target data.

In training, the loss is computed using the human observer rating value rtrue and the predicted
mixture distribution PðrjXÞ from the MDN as follows:

EQ-TARGET;temp:intralink-;e014;116;626L ¼ − log PðrtruejXÞ: (14)

Each mean μiðXÞ in the predicted mixture distribution was trained to minimize the loss during
training, which should follow the relative prevalence of the rating values given by the human
observer(s). Each standard deviation σiðXÞ was trained to model the variance of each mean μiðXÞ.

In testing, a rating value is predicted by first randomly sampling the mixing coefficients and
then sampling from the Gaussian distribution corresponding to that sampled mixing coefficient
with the corresponding estimated mean and standard deviation. Multiple sample rating values
can be generated to improve the uncertainty in AUC values calcluated from the testing data.

2.5 DeepAMO Performance on Unseen Images

To estimate the number of images needed to train the DeepAMO, we used simulated feature
vectors and rating values to train and test the MDN. The criterion for judging the number
of images to be sufficient is the statistical confidence level needed in comparing AUC values
between the proposed model and human observer. We assumed that each element of the feature
vectors followed a Gaussian distribution (with dependencies introduced between the TVDks and
DC scalars) and the rating values described by a mixture of Gaussians.

The feature vectors were simulated by first generating values for the TVDk, one for each
orientation. Each TVDk was assumed to be mutually independent and was generated by sam-
pling from independent Gaussian distributions [N (μ ¼ 25, σ ¼ 5) for large TVDk andN (μ ¼ 5,
σ ¼ 1) for small TVDk]. The sampled TVDk values were then used to calculate the means
and standard deviations of the DC scalars, which were also assumed to follow a Gaussian
distribution:

EQ-TARGET;temp:intralink-;e015;116;330μcs ¼ TVDc × TVDs; (15)

EQ-TARGET;temp:intralink-;e016;116;287σcs ¼
μcs
3

; (16)

EQ-TARGET;temp:intralink-;e017;116;257μct ¼ TVDc × TVDt; (17)

EQ-TARGET;temp:intralink-;e018;116;235σcs ¼
μcs
3

; (18)

EQ-TARGET;temp:intralink-;e019;116;205μst ¼ TVDs × TVDt; (19)

EQ-TARGET;temp:intralink-;e020;116;183σst ¼
μst
3
: (20)

The rating values of each feature vector were sampled from multi- or unimodal Gaussian
distributions. The distribution parameters for these simulated rating values were derived quali-
tatively from distributions of rating values from human observer studies and are shown in
Table 1. For each feature vector, we then sampled N rating values from the assumed distribution
to simulate the appropriate level of inter- or intraobserver variability in the data. Specifically, in
this work, we sampled two rating values for each feature vector. So there were 15,000 (2500 × 3

feature vector types × 2 repeated samples) feature vector and rating value pairs for the case
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that had 2500 samples/feature vector type, and 30,000 in total for both the defect-present and
defect-absent cases.

In the simulation experiment, we generated three types of feature vectors for each class
(defect-present and defect-absent): definitely-present (three large TVDks), equivocal (two large
TVDks and one small TVDk), and definitely-absent (three small TVDks), reflecting different
levels of user confidence in making the decision. For example, the feature vectors that belong
to the definitely-present type in the defect-present class were generated by sampling three large
values for the three TVDks, modeling a high level of success of the segmentation network in
detecting the defect in slices from all three orientations. The other two types (equivocal and
definitely-absent, respectively) contained two and one large values (assigned randomly to any
of the three orientations) in the TVDks to simulate different degrees of success in detecting the
defect in the three orientations.

2.6 Training and Testing of DeepAMO

The proposed model observer was trained in two stages. First, the segmentation network was
trained given the ground-truth defect SMs. Next, the MDN was trained using the output from the
trained segmentation network and the human observer rating values.

The segmentation network was trained with triad images and their corresponding binary
defect segmentation labels. Since each defect only contained about 0.5% of the kidney cortex
volume, the number of defect-present triads was much smaller than the defect-absent ones, mak-
ing this a highly imbalanced dataset. Thus we adopted data augmentation of the defect-present
triads to balance the training data. We enriched the data by forming an additional seven sets of
raw images and their labels by rotating each original defect-present triad image by 90, 180, and
270 deg and flipping them and the original dataset upside down. The exponential logarithmic loss
in Ref. 58 was adopted to emphasize segmentation of small structures with the best-performing
weights (ωcross ¼ 0.2 andωdice ¼ 0.8) suggested in this paper. The mixed exponential logarithmic
loss in Ref. 58 was adopted in order to aid segmentation of small structures:

EQ-TARGET;temp:intralink-;e021;116;190L ¼ ωcrossLcross þ ωdiceLdice; (21)

where ωcross and ωdice are the mixing coefficients of the exponential categorical cross-entropy loss
and the exponential logarithmic dice loss:

EQ-TARGET;temp:intralink-;e022;116;135Lcross ¼ Eðf− ln½pðxÞ�gβcrossÞ; (22)

EQ-TARGET;temp:intralink-;e023;116;91Ldice ¼ E

�
wl

�
− ln

�
2½Px yðxÞpðxÞ�
½Px yðxÞ þ pðxÞ�

��
βdice

�
; (23)

Table 1 Summary of distribution parameters for the simulated rating values.

Definitely-yes Not-sure Definitely-no

Defect-present feature vector type

Rating value means 7 10 2 4 −3

Standard deviation 1.2 0.2 1.2 1.2 0.2

Component weight 0.5 0.5 0.5 0.5 1

Defect-absent feature vector type

Rating value means −10 −8 −2 −4 2 5

Standard deviation 0.2 1.2 0.7 1.2 0.5 0.8

Component weight 0.5 0.5 0.5 0.5 0.5 0.5
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where x is the pixel position and pðxÞ and yðxÞ are the network’s predicted value and the ground
truth segmentation at position x, respectively. Eð·Þ is the expectation value with respect to x. wl is
the label weight, which was used to increase the importance of objects comprised of a small
number of voxels such as the defect:

EQ-TARGET;temp:intralink-;e024;116;687wl ¼
�P

k fk
fl

�
: (24)

For the segmentation network, we adopted a shallow version of the U-Net.59 We used a shal-
low (in depth) network due to the relatively small amount of training data available in this study.
A deeper network might be needed for a larger number of signal and anatomical variations. The
architecture of the segmentation network used in this study is shown in Fig. 4. Gaussian noise
with a standard deviation of 1.0 was added to the renormalized input image (ranges 0 to 255) to
prevent overfitting. We searched for the optimal network capacity (depth) for the segmentation
network. There was a trade-off between producing the highest dice score and using the smallest
number of parameters. However, it was observed that there was a relatively small increase in dice
score with increased number of parameters in the tested network architectures, and the dice

Fig. 4 Segmentation network architecture used in this study.
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scores were all reasonably high. So we adopted the network architecture that had the smallest
number of parameters and yet gave a reasonably high dice score (0.97). The train and test data-
sets had 12,288 and 3072 triads, respectively. Data augmentation was done on-the-fly. We used
an Adam60 optimizer with a learning rate of 0.001 and a batch size of 200. The segmentation
network was trained for 500 epochs to investigate convergence, but very near convergence was
achieved in about 100 epochs. The training took about 2 h to converge (∼100 epochs) on a single
Tesla K40 GPU.

For the MDN, the number of mixtures was chosen by visually inspecting the distribution of
the target human observer’s rating values. The number of mixtures was selected to be equal or
greater than the number of modes observed in the distribution of the observer’s rating values. For
this study, we used an MDN with three fully connected dense blocks each with 128 dense units
and a dropout rate of 0.5. Each dense block contained a dense layer with the above-mentioned
dense units and a batch normalization layer, followed by the rectified linear unit activation and
dropout layer. The outputs from the last dense block were then connected to three dense layers
that, respectively, output the mixing coefficients πiðXÞ, means μiðXÞ, and sigmas σiðXÞ for the
estimated distribution. The number of mixing coefficient was set to 5 since we obsevered about
5 modes in the distribution of huamn observers’ rating vlaues.

2.7 Human Observer Study

The same image display format shown in Fig. 1 was used in the human and model observer
studies. A sample display of the human observer GUI is shown in Fig. 5. In the study, the
observer was asked to rate their confidence that a defect was present on a continuous scale rang-
ing between 1 and 5 (later mapped to −10 to 10), with the highest number representing the
greatest confidence that a defect was present. To familiarize themselves with the display program
and the nature of the clinical defect detection task, all observers participated in an initial training
session comprised of 24 images. In the training session, phantom images of the kidney cortex
were provided as ground truth to the observers once their rating value was recorded. Additional
training was done as described below. Rating values from the training study were not used in
training the network.

Two senior medical imaging physics PhD students participated in the human observer study.
A total of 384 of the composite images described in Sec. 2.1 were used. To simulate an SKS
detection task, the train and test datasets were created without requiring a balance of defect
locations. Thus the test dataset could contain defect locations that were not present in the initial
training dataset. The images were divided into an initial training set and three test blocks. The
block layout for each observer is shown in Table 2. In each test block, a refresher set of 24 images
was provided to refresh the observer’s memory about the task. A total of 288 rating values were
collected from each observer.

Fig. 5 A sample image of the GUI used in the human observer study for DeepAMO.
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2.8 Equivalence Hypothesis Testing

An equivalence statistical hypothesis test61 was conducted to test whether the performance (as
measured by the AUC) of the human observer and the proposed model observer was statistically
equivalent on a defect detection task. The null hypothesis and alternative hypothesis are
expressed as follows:

EQ-TARGET;temp:intralink-;e025;116;513H0∶ jAUCHO − AUCMOj ¼ δ H1∶ jAUCHO − AUCMOj < δ; (25)

whereAUCHO andAUCMO, respectively, are the AUC values for the human and proposed model
observer; δ is a threshold for an important difference (margin of difference) betweenAUCHO and
AUCMO. The difference parameter was used as it is very difficult, if not impossible, to show
statistically that two quantities are exactly equal. In addition, small differences are not practically
important. The difference parameter was prespecified and is a determinant of sample size: in
order to prove better equivalence (smaller δ), a larger sample size is required. In order to reject
the null hypothesis, the confidence intervals (CIs) of the difference of the AUCs must lie within
the interval defined by the margin of difference parameter, as described in Ref. 61 and illustrated
in Fig. 6. For this study, we set the δ to be 0.05 (equivalent to a 95% confidence level). That is, as
long as the CIs of the ΔAUC are found to be smaller than 0.05, the null hypothesis can be
rejected and equivalence of the human and model observer can be claimed.

In order to calculate the CIs for the differences in the AUCs (ΔAUCs), we conducted
a 5 × 2-fold cross-validation experiment using data generated by the two human observers.
A total of 576 rating values (288 images × 2 observers) were used in training and testing of
the proposed model observer. The data were partitioned randomly for each of the five trials,
and a 50-50 train-to-test fraction was adopted. Within each trial, the train and test data were
switched between the first and second fold. We used a 50-50 split strategy to divide the data,
as we assumed that the number of images in the test dataset should not be too small, otherwise,
the distribution of rating values produced would be too coarse to represent the observer’s true
performance, thus resulting in unfair AUC comparisons. However, we have not investigated
whether the 50-50 splitting is optimal.

Table 2 Summary of human observer study block partition.

Session
Initial training

images Blocks Image/block
Total
images

24 1 24 training 24

1 0 1 24 training/96 test 120

2 0 1 24 training/96 test 120

3 0 1 24 training/96 test 120

Fig. 6 A pictorial illustration of the rejectable and unrejectable case in equivalence hypothesis
testing.
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2.9 Comparison of DeepAMO to an Unoptimized Scanning Linear Observer

The performance of a scanning linear discriminant observer (SLDO) study was evaluated using
the same reconstructed images as described in Sec. 2.1. However, since the background and
defects did not have closed form expressions for the observer and the observer had to be trained
at each potential defect location, we limited scan range for the SLDO to only slices that could
actually contain a defect. This somewhat reduces the difficulty of the task by eliminating the
chance of making a mistake, e.g., due to the presence of a noise artifact in those slices, as
described in Sec. 2.2.

In the SLDO study, we applied the observer to a 3-slice composite image. The composite
image was formed by extracting the coronal, transaxial, and sagittal slices containing the defect
centroid from the 3D reconstructed image. The SLDO was applied to the defect at the inter-
section point of those slices. Thus the SLDO did not have to perform the defect confirmation
in the three directions. All slices had a size of 128 × 128 pixels and their defect centroid shifted
to the center of the image. Samples of the defect-present and defect-absent composite image are
shown in Fig. 7. We used seven non-overlapping rotationally symmetric difference-of-mesa
channels. The starting frequency and the width of the first channel were 0.5 cycles per pixel,
and subsequent channels had widths that doubled and abutted the previous channel. The fre-
quency domain channels and corresponding spatial templates are shown in Fig. 8.

Each of the 7 spatial domain templates was applied to each of the 3 images (transaxial, sag-
ittal, and coronal) to give a 21-element feature vector. Each element in the resulting feature vector
was obtained by taking the dot product of a spatial domain template with an input composite
image. These feature vectors served as inputs to train and test the SLDO as described below.

To apply the SLDO on a test image, we first generated N feature vectors of each test image,
corresponding the N ¼ 12 different defect locations. Then we trained a different SLDO on the
feature vectors at each of the 12 potential defect locations. For each test image, we applied each

Fig. 7 (a), (b) The defect-present and defect-absent composite image at two different randomly
sampled defect locations, respectively. The red arrows mark the exact location of the defect inside
each slice.

Fig. 8 Images of the seven anthropomorphic DOM channels used in this work. (a) The frequency
channels and (b) the spatial domain templates. From left to right, the start frequencies and widths
of the channels were 0.5, 1, 2, 4, 8, 16, and 32 cycles∕pixel. The spatial templates are the analytic
inverse Fourier transforms of the frequency channels sampled at the image pixel size.
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of the 12 SLDOs to the feature vectors from each of the potential defect locations, producing
a set of 12 test statistics and selected the largest to serve as the test statistic for that test image.
We used a leave-one-out training–testing strategy. In this strategy, one feature vector was left-out
(i.e., not used in the training), and the remaining vectors were used to train the observer. In our
case, the feature vector corresponding to the ground-truth defect location of the test image was
left out in training the SLDO for that defect location. The trained SLDO was then applied to the
left-out vector to produce a test statistic for that defect location. ROC analysis was performed on
the test statistics using the LABROC4 code (68), and the AUC calculated. Bootstrapping and
non-parametric analysis were used to compute 95% CIs for the AUC value.

3 Results

3.1 DeepAMO on Simulated Data

The results (Fig. 9) show the degree of similarity between the histograms (distributions) of the
simulated test data (simulated unseen data). The degree of similarity increased as the total num-
ber of samples increased, indicating that the MDN was capable of handling complex distribu-
tions of observer’s rating values. This result agrees with the hypothesis that the MDN requires a
modest amount of training data in order to learn the underlying behavior of the observer on
unseen data. Here we assumed that the underlying behavior of the observer was encoded in
the distribution of that observer’s rating values (training data).

The results also demonstrated that there is a trade-off between the CI width of the ΔAUC
and the total number of samples in the dataset. Bootstrapping was used to calculate the non-
parametric CIs on the ΔAUC. The ΔAUCs and 95% CIs on the AUCs are summarized in

Fig. 9 Plots of histograms of the rating values of the simulated feature vectors (test data only) and
predicted rating values on these data given by the DeepAMO. The plots show the class 0 and 1
(defect present and absent, respectively) as well as the calculated AUC value.
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Table 3. The results show that the 100, 500, and 2500 samples/feature vector type cases had
decreasing widths of the CIs of ΔAUC, indicating that, as expected, more samples are needed
to demonstrate greater equivalence (smaller δ) between the human and proposed model observer.
The data also suggest that training set size is an important parameter in determining the bounds
of the 95% CI on the ΔAUCs.

3.2 DeepAMO Test Results

For stage I, the highest dice score achieved on the validation data for the best segmentation
network was 0.975. The validation was done on a balanced dataset with 50% of the triads con-
taining a defect.

The AUC values for the human observers and the corresponding DeepAMOs for the
5 × 2-fold cross-validation experiment are summarized in Table 4. The mean and standard
deviation of the ΔAUC were 0.03 and 0.0204, respectively. The 95% CI for the ΔAUC was
½−0.0174; 0.0426�, under the assumption that ΔAUC was normally distributed. The results
of the study show that the null hypothesis with a margin of difference (δ) >0.0426 can be
rejected at a confidence level of 95%, with this training set comprised of 288 samples.
The histograms of the rating values from the human observers and the DeepAMOs for the
5 × 2-fold cross-validation experiment are shown in Fig. 10. The AUC value is given at the top
of each plot in that figure. The distributions of the rating values for the human and model
observer are qualitatively similar.

3.3 Scanning-Linear Observer Test Results

The mean AUC for the scanning-linear discriminant observer and its 95% confidence internal
was 0.992 and [1.00, 0.986], respectively. Without an implementation of internal noise,
the SLDO had a substantially higher AUC (0.99) compared to the DeepAMO and human
observer.

Table 3 Summary of simulation results

Number of
samples per
feature
vector type

AUC of
DeepAMO

on simulated
test data

AUC of
simulated
test data

(ground truth) ΔAUC 95% CI on ΔAUC CI width

100 0.773 0.769 0.004 ½−0.0502;0.0477� 0.0979

500 0.760 0.776 −0.015 ½−0.0352;0.0261� 0.0613

2500 0.768 0.767 0.001 ½−0.0074;0.0089� 0.0163

Table 4 Summary of stage II training results

Trial#

First fold Second fold

ΔAUC
first fold

ΔAUC
second fold

Mean ΔAUC
per trial

AUC
HO

AUC
DeepAMO

AUC
HO

AUC
DeepAMO

1 0.829 0.79 0.797 0.75 0.039 0.05 0.045

2 0.814 0.77 0.816 0.78 0.044 0.036 0.04

3 0.814 0.82 0.815 0.77 −0.01 0.045 0.018

4 0.82 0.77 0.809 0.8 0.046 0.007 0.027

5 0.826 0.82 0.806 0.77 0.008 0.035 0.022
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4 Discussion

One limitation of this paper is that the simulated dataset has limited background (anatomical) and
signal (shape and size) variation. However, we believe that this limitation does not detract from this
paper’s demonstration that the proposed network architecture can model human observer perfor-
mance. A dataset with greater anatomical and signal variations might require a different architec-
ture for the segmentation network. However, as long as the segmentation network produced results
that distinguish between the defect-present and absent cases at least as well as a human observer,
the subsequent stages could still match that performance to human observer performance.

Fig. 10 Histograms of predicted rating values given by DeepAMO on unseen human observer
data from the third trial of the 5 × 2-fold cross validation experiment (other trials have similar pat-
terns). Note that multiple predicted rating values were generated for each test image during testing
of the DeepAMO to reduce sampling error. The histograms of the other half of human observer
data used for training the DeepAMO are not shown in the plot.
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A second limitation of this paper is the use of non-physician observers. Non-physicians were
used because of the difficulty of recruiting physician observers to perform a study of this nature.
Although the lack of physician observers would clearly affect the clinical diagnostic task, the task
that the observers performed in this study was limited to identifying defects in images. We believe
that well-trained non-physicians, with sufficient training, can perform well on this more limited
task. In addition and more importantly, the purpose of this paper was to validate the ability of the
proposed model observer to reproduce human observer defect detection performance and not to
generate data on performance that impacts a clinical task. So even if the human observers used
performed poorly compared to physicians, the data demonstrate that the model can reproduce
their performance. The limitations of the human visual system that degrade performance on defect
detection are present even for the non-physician observers, and this work demonstrates the ability
of the proposed observer to model these limitations. Therefore, we believe that the data from the
observers used in this study demonstrate the utility of the proposed method.

A third limitation of this paper is that the performance comparison study between the
DeepAMO and the SLDO. We only compared the performance of the DeepAMO to a limited
implementation of an SLDO modeling a simplified defect detection task (using single-slice,
multi-orientation images). The SLDO implementation used rotationally symmetric channels for
a non-symmetric signal and did not include an internal noise model. In addition, we limited the
scan range for the SLDO to only slices that could actually contain a defect in this particular
dataset. That restriction could have reduced the difficulty of the defect detection task as
explained in Sec. 2.9. Thus we cannot conclude definitively that the DeepAMO is better than
an SLDO. A comprehensive study would require calibrating the noise model prior to applying it
and was beyond the scope of this work.

A potential concern for the DeepAMO is the training time (∼2 h) required by the segmen-
tation network. However, computational cost for a scanning CHO to read a 3D image can be
quite computationally intensive as well. Additionally, substantially faster GPUs than the one
used in this study are now available and could reduce this time substantially.

5 Conclusions

The DeepAMO model developed in this paper was able to reproduce human observer ratings for
the task of interpreting 3D image volumes based on realistic simulations of pediatric renal dis-
ease. This indicates that building conceptual components of the reading process (segmentation,
confirmation, and feature synthesis into a score) into network models can allow training of these
models in settings where limited training images are available. The results show that the per-
formances of the proposed model and human observers on unseen images were equivalent with
respect to a margin of difference in the AUC (ΔAUC) of 0.0426 at p < 0.05, for a training set of
288 samples. The proposed framework could be readily adapted to model human observer per-
formance on detection tasks for other imaging modalities such as PET, CT, or MRI.
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